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Experimental results are compared with a theoretical analysis concerning wall effects on the
symmetric mode resonance frequency of millimeter-sized air bubbles in water. An analytical model
based on a linear coupled-oscillator approximation is used to describe the oscillations of the
bubbles, while the method of images is used to model the effect of the wall. Three situations are
considered: a single bubble, a group of two bubbles, and a group of three bubbles. The results show
that bubbles attached to a rigid boundary have lower resonance frequencies compared to when they
are in an infinite uniform liquid domain (referred to as free space). Both the experimental data and
theoretical analysis show that the symmetric mode resonance frequency decreases with the number
of bubbles but increases as the bubbles are moved apart. Discrepancies between theory and
experiment can be explained by the fact that distortion effects due to buoyancy forces and surface
tension were ignored. The data presented here are intended to guide future investigations into the
resonances of larger arrays of bubbles on rigid surfaces, which may assist in surface sonochemistry,
sonic cleaning, and micro-mixing applications.
© 2005 Acoustical Society of America. [DOI: 10.1121/1.2062268]
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I. INTRODUCTION

Modeling the compressible oscillations of gas bubbles
dates back to 1917 with the work of Rayleigh1 who gave the
first mathematical formulation of the dynamics of a single
oscillating bubble. In the family of Rayleigh-Plesset equa-
tions the radial expansion and contraction of the bubble is
given by the spherically symmetric momentum equation for
the liquid only; the ideal gas law is often used to give the
boundary condition at the bubble wall. Minnaert2 indepen-
dently developed a simple linear relationship for the reso-
nance frequency of a freely pulsating spherical bubble,
known as the Minnaert frequency, which was derived using
an energy balance approach that inherently assumed linear
behavior. Extensive work has since been done toward devel-
oping a model to describe the oscillations of multiple gas
bubbles in a liquid medium,3–11 mostly analyzing pairs of
bubbles. Furthermore, many investigators have been inter-
ested in how bubbles interact with each other, and in the
natural frequencies of a system of an arbitrary number of
bubbles.

A coupled-oscillator model based on the self-consistent
approach, such as that introduced by Tolstoy4 and later de-
veloped by Feuillade,12 is one way to describe the collective
oscillations of bubbles. This approach inherently eliminates
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an inconsistency in the coupled equations owing to multiple
bubble re-reflections and has been shown to qualitatively
predict the acoustic pressure distribution around a bubble
chain.13,14 In his work, Feuillade12 modeled an arbitrary
number of bubbles in free space, showing how the symmet-
ric mode (where all bubbles oscillate in phase) has a lower
resonance frequency than the asymmetric modes (where
some, or all of the bubbles oscillate out of phase).

Due to the complex nature of surface tension and buoy-
ancy effects, most modeling of bubbles attached to a rigid
boundary has been done numerically. A good review of
bubble deformation near rigid and free boundaries is given
by Blake and Gibson.15 Other workers include Chahine,16,17

who has used a numerical boundary element method to de-
scribe bubble collapse near a solid wall. However, in terms
of the current framework, for which experimental results can
be easily compared to a simple linear model, numerical cal-
culations are not required. In this paper, therefore, an image
theory approach developed by Strasberg18 will be incorpo-
rated into Feuillade’s work to model the effect of the bound-
ary.

Strasberg performed an analysis of the effect of a nearby
rigid boundary on the resonance frequency of a single spheri-
cal bubble. He showed that a bubble pulsating next to the
rigid boundary is equivalent to two bubbles pulsating in
phase in free space, which in this paper will be referred to as
the “image effect.” The result of this image effect is that
bubbles next to a rigid boundary have lower resonance fre-

quencies than the same bubbles in an unbounded domain.
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Including this into Feuillade’s model is easily done and will
be shown in the following. Other work, by Howkins19 and
Blue,20 also adopted Strasberg’s image theory to try to ex-
plain their experimental findings. In their work, they experi-
mentally measured the resonance frequency of a bubble
which was actually attached to a rigid boundary, and showed
that the resonance frequency was lower compared to that of
an equivalent bubble in free space. However their work only
considered single bubble arrangements of different bubble
radii, and only n different bubble radii, where n=2 for Blue’s
work and n=11 for Howkins’ work. This paper is intended to
determine whether the image theory is applicable for larger
bubble groups attached to a rigid boundary, by providing
original and detailed experimental results over a range of
bubble sizes.

Apart from these limited experimental and theoretical
studies on the resonance frequencies of multiple bubble ar-
rangements attached to a rigid boundary, the majority of
work has been carried out for bubbles in free space. For
example, lower resonance frequencies for groups of bubbles
has been shown by Nicholas et al.21 for bubble clouds, by
Feuillade12 for up to three bubbles, and by Manasseh et al.22

for a bubble chain. Furthermore, Hsiao et al.8 and Leroy et
al.11 experimentally showed that the symmetric mode reso-
nance frequency for two bubbles in free space is lower than
the resonance frequency of a single bubble in free space. In
addition, Weston23 and Tolstoy et al.24 have modeled line and
plane arrays of bubbles.

The present paper thus fills a gap in the literature, in that
it is concerned theoretically, but primarily experimentally,
with the symmetric mode resonance frequency of multiple
bubble arrangements attached to a plate, over a range of
bubble sizes. From a theoretical standpoint, the current work
builds upon a simplified version of Feuillade’s coupled-
oscillator model, in which a mirror image of bubbles is in-
troduced to model the presence of a rigid boundary. The
resulting system of equations is reduced to an analytical ex-
pression which gives the symmetric mode natural frequency
of an arrangement of up to three bubbles attached to a rigid
boundary, whose spacing between bubble centers is identical.
Although unequal bubble spacings are an interesting added
possibility, as is the possibility of unequal bubble sizes, ef-
fects of these parameters are not considered in this paper.

Experimental results for the symmetric mode resonance
frequency of different arrangements of bubbles attached to a
glass plate are presented. One, two, and three bubble ar-
rangements are considered, where in each case the system
was excited by a varying frequency (chirp) signal, covering
the expected resonance frequency of the given bubble ar-
rangement. The response with and without bubbles was de-
tected by a hydrophone, allowing the symmetric mode reso-
nance frequency to be determined. Comparison between the
theoretical natural frequency and the experimental resonance
frequency can be made since for the relatively large bubble
sizes involved, the resonance frequency and natural fre-
quency are essentially the same.

For ease of experimental setup, bubbles of order milli-
meter size were used, with natural frequencies of the order of

1000 Hz. As a result, the acoustic wavelengths in the experi-
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mental tank were large (=1.5 m) relative to the spacing be-
tween the bubbles (which was approximately three times the
equilibrium radius; a typical value being 7.5 mm). Hence the
symmetric mode was preferentially excited over the asym-
metric modes because a given bubble arrangement was under
the same pressure field at any one point in time, albeit with
slight variations in the pressure amplitude and phase.

From this work, predictions of the resonance frequencies
of multiple bubbles attached to a rigid boundary will poten-
tially help in the manufacture and operation of devices for
the medical-pathology field such as those already demon-
strated by Liu et al.25 as well as for surface sonochemistry
and sonic cleaning applications.

II. THEORY

A. Development of the model

Under adiabatic conditions, the natural frequency of a
spherical, millimeter-sized, linearly oscillating bubble is
given by Minnaert’s equation2

1 �3yP0
w0 = , (1)

R0 p

where w0 is the circular natural frequency, y is the ratio of
gas specific heats, P0 is the absolute liquid pressure, p is the
liquid density, and R0 is the equilibrium radius of the bubble.

Feuillade’s model12 is used to describe the dynamics of
an arbitrary number of bubbles located in free space, driven
by an external pressure field. Mathematically this is given by
the following coupled differential equation:

N
p

miv̈i + biv̇i + Kivi = − Pie
I(wt+¢i) − " v̈ j(t − sij/c) ,

j*i 47sji

(2)

where vi represents the differential volume of the ith bubble
(i.e., the difference between the instantaneous and equilib-
rium bubble volumes), mi(=p /47R0i

) is the inertial “mass”
of bubble i, having radius R0i

, bi describes the damping,
and Ki(=3yP0 /47R0

3
i
) is the “adiabatic stiffness.” The am-

plitude and phase of the external field experienced by the
ith bubble are denoted by Pi and ¢i, respectively, and sji

denotes the center-to-center distance between bubbles i
and j. The angular driving frequency is denoted by w and
t is time. The imaginary unit is denoted by I. The last term
on the right-hand side describes the time delay coupling
between the bubbles due to their oscillating pressure
fields. The speed of sound in water is denoted by c.

Since only the natural frequencies are required, the ex-
ternal field acting on each bubble is neglected. Later it will
be shown that the natural frequency is a very close approxi-
mation to the resonance frequency, given the relatively large
bubble sizes considered. The time delay in the second term
on the right-hand side of Eq. (2) can be neglected since there
is negligible time for the sound to propagate from one bubble
to another. In other words, because of the small bubble sepa-
rations considered (e.g., sij =7.5 mm) and the relative speed
of sound in water (i.e., c=1480 m/s), the time delay term

−6
sij /c=5X10 s and will be assumed to be small enough,

Payne et al.: Bubble resonance on a rigid boundary



B

FIG. 1. Schematic of bubble image model for N=2. The solid line repre-
sents the real bubble and the dashed line represents the image bubble.

compared to the natural period of an oscillating bubble, to
neglect. Further, it has been shown by Doinikov et al.14 that
time delays only affect the damping but not the natural fre-
quencies of the natural modes of the system when the
bubbles are not too far apart. Since the interest of this paper
is only on the natural frequencies of the system, it is antici-
pated that neglecting time delays will not affect any of the
data presented in this paper. As a further simplification it is
assumed that the bubbles have identical radii and the same
physical properties (i.e., R01

=R02
=…=R0N

=R0 , m1=m2

=…=mN=m, etc.). Therefore Eq. (2) reduces to

N
p

mv̈i + bv̇i + Kvi = − " v̈ j . (3)
j*i 47sji

It can be seen that the solution of the above gives N different
eigenmodes each having an associated eigenfrequency.

B. Introduction of a rigid boundary

Consider the dynamics of a planar array of bubbles situ-
ated a distance l /2 from a rigid boundary. A bubble next to a
rigid boundary creates an acoustic image of itself,12 which
oscillates in phase with the original bubble and is coupled to
it. Under the above-mentioned assumptions, the bubble pro-
duces a velocity field like a potential-flow source or sink;
hence the rigid boundary can be modeled by a mirror image.
This is depicted in Fig. 1 for the simple case of two bubbles

i and Bj. Note that l(=sii)
) is the separation between a

bubble and its image (e.g., Bi and Bi)
).

It can be seen by examining Eq. (3) with j set to i) that
the image bubble (which simulates the solid wall) has the
effect of increasing the effective mass on the real bubble.
Physically this is because the boundary forces the stream-
lines to be parallel to itself and hence into a new (more
constrained) topology. Thus, an extra term (given by R0 / l)
arises as part of the inertial coefficient for bubble i. Also an
extra term (given by p /47lj)i

) arises because of the coupling
between a given bubble i and all the other bubble images j).

Equation (3) thus becomes
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�
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N
R0 p p

m + m v̈i + bv̇i + Kvi = − " + v (4)( ) ( ) ¨ j ,l j*i 47sji 47lj)i

where lj)
s2+ l2) denotes the radial distance between im-i(=

age bubble j) and bubble i.
An analytical expression is obtained for the undamped

natural symmetric mode frequency for N'3 bubbles,26 in
which the separation between bubble centers, s, is identical.
Since the symmetric mode is assumed all bubbles pulsate
with the same amplitude and phase, it follows that for the
undamped case, Eq. (4) reduces to one independent equation
given by

R0 p 1 1(m + m )v̈ + Kv = − (N − 1) ( + )v̈ , (5)
l 47 s l)

where l)= s2+ l2. Grouping inertia terms, dividing through
by m and noting that m=p / (47R0) and K /m=3yP0 / (pR2

0)
=w0

2, yields

R0 1 1 2(1 + + (N − 1)R0( + ))v̈ + w0v = 0. (6)
l s l)

The damping term has been neglected because Strasberg18

showed that its impact on the resonance frequency is negli-
gible for relatively large bubbles. However, it does influence
the resonance frequency of small (submicron radii) bubbles,
as shown by Khismatullin.27 The natural frequency (in rad/s)
of Eq. (6) is thus given by

wsymN
=

1 +
R0

l

w0

+ (N − 1)R0(1

s
+

1

l)
) , (7)

which holds for N'3. This limitation arises because it has
been assumed that the separation between bubble centers is
identical and a group of three bubbles is the largest number
of bubbles which satisfies the condition for a planar array.
Note that N=3 corresponds to a group of three bubbles ar-
ranged in an equilateral triangle.

A justification for the comparison between the resonance
frequency of the bubbles in the experiments and the natural
frequency given by Eq. (7) is as follows. The resonance fre-
quency is identical to the natural frequency when there is no
damping. Since the bubbles considered in this paper are quite
large, damping is small, meaning that the resonance fre-
quency can be very closely approximated by the undamped
natural frequency given by Eq. (7). To show this, a plot of
the amplitude response (in terms of a change in radius) of a
group of two bubbles attached to a rigid boundary and driven
by an external source is given in Fig. 2, where R0=2.5 mm,
s=5R0, and l=2R0. In this numerical example, the bubbles
have been driven in phase (to excite the symmetric mode),
and damping has been included. The amplitude has been
divided by the driving amplitude to give a normalized re-
sponse amplitude and is denoted by the solid line in Fig. 2.
The dashed line highlights the undamped natural frequency
as calculated using Eq. (7). Clearly the difference between

the undamped natural frequency and the resonance frequency
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FIG. 2. Resonance frequency compared to the undamped natural frequency
for a group of two bubbles attached to a rigid boundary, each with R0

=2.5 mm. Separation distance s=5R0 and l=2R0. Equation (7) is used to
calculate the undamped natural frequency which is highlighted by the
dashed vertical line. The resonance frequency coincides with the undamped
natural frequency at approximately 956 Hz.

(the frequency at which maximum amplitude occurs) is neg-
ligible. For this example resonance occurs at approximately
956 Hz.

Bubbles are considered “attached” to the boundary when
l=2R0 (the smallest physical value for l), such that the per-
pendicular distance from the center of a bubble to the plate is
equal to R0. Equation (7) does not allow for divergence from
sphericity due to the flattening of the buoyant bubble, which
in the experiment was trapped under a rigid boundary. It is
therefore expected that the expression will be more valid for
smaller bubbles which are closer to spherical shape. For
larger bubbles however there is a significant contact area
between the bubble and the boundary, resulting in reduced
bubble-wall velocity near the boundary as the bubble pul-
sates. In this situation the image theory is no longer appro-
priate. Instead, the dynamics of larger bubbles are better de-
scribed by hemispheres or domes as previously investigated
by Blue.20

To do this, a hemispherical shape is assumed, equivalent
in volume to half a spherical bubble. Therefore, in determin-
2844 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
ing the resonance frequency of a hemispherical bubble, the
radius of a spherical bubble with twice the volume of the
hemispherical bubble is calculated and substituted into Min-
naert’s equation [Eq. (1)]. This has the effect of reducing the
resonance frequency by a factor of 2−(1/3) compared to that of
a spherical bubble with the same volume as the hemisphere.
It is therefore suggested that the dynamics of a large (ap-
proximately hemispherical) bubble which is attached to a
boundary is equivalent to the dynamics of a single bubble
(with twice the volume) pulsating in free space. This is what
was implied from Blue’s work. In the absence of surface
tension and friction, this seems a reasonable approximation.

The above-noted consideration, which is consistent with
the work of Strasberg, Blue, and Howkins, means that the
resonance frequency of a bubble attached to a rigid boundary
will be lower than that of a bubble with the same size in free
space. But due to nonsphericity of the bubbles the resonance
frequency will be slightly increased.

III. EXPERIMENT

Experiments were carried out to detect the response of
air bubbles in water trapped under a glass plate when driven
by an acoustic pressure field, as depicted in Fig. 3. The tank
was made from 12-mm-thick Perspex with a 300 mm square
base. The glass plate (of thickness 3 mm) was securely main-
tained at a height of 20 mm above the face of a piston which
was attached to a modified speaker. A circular hole in the
bottom of the tank allowed direct transfer of sound from the
speaker to the water, thereby setting up an acoustic pressure
field within the tank. Adhesive tape was used to seal the area
adjoining the water and the face of the piston.

Air bubbles were generated with a syringe (50 Il, AL-
LTECH Associates Australia) with a volumetric accuracy of
±5% and were arranged as close to the center-line of the
piston as possible (±0.25 mm) so as to receive maximum
power from the speaker. A chirp signal was used to excite the
bubbles which was preamplified before passing through the
speaker. In the first set of single bubble experiments, a chirp
signal of 80 ms was used, while for the second set of single
bubble experiments, as well as for the two and three bubble
experiments, a chirp signal of 180 ms was used. The differ-
ence in chirp duration for the two sets of single bubble ex-

FIG. 3. (Color online) Schematic cross-sectional view
of the main experimental apparatus with a single air
bubble. The bubble is excited by the speaker.
Payne et al.: Bubble resonance on a rigid boundary



TABLE I. Experimental parameters and conditions.

Density of water 1000 kg/m3

Temperature of water 20°C
Equilibrium water pressure 105 Pa
Speaker driving pressure amplitudes <100 Pa
Frequency range 400–3000 Hz
Polytropic index 1.33

periments is shown not to affect the resonance frequency.
The applied sound pressures directly above the piston near
the glass plate were typically of the order of 100 Pa or less,
so as to remain in the linear regime. Frequencies employed
were mostly in the 400–3000 Hz range. Table I gives a sum-
mary of the experimental conditions and parameters.

The small pressure fluctuation caused by the response of
the bubbles was detected by a hydrophone (Brüel & Kjaer
8103, 9.5 mm diameter and 50 mm in length, with an essen-
tially constant frequency response from 0.1 Hz to 20 kHz).
The distance from the hydrophone’s acoustic center to the
closest bubble wall was approximately 7 mm. The output of
the hydrophone was then fed into a charge amplifier (Brüel
& Kjaer type 2634, with an essentially constant frequency
response from 1 Hz to 20 kHz), and connected to a digital
oscilloscope (HP54600A) for data acquisition and storage on
a PC. A schematic of the setup is given in Fig. 4.

Thirty time-domain responses were captured for a given
bubble volume and arrangement, and each one converted to a
frequency-domain response. Likewise, 30 responses without
bubbles were captured, thus measuring the response of the
tank and speaker assembly only. The difference in the
FIG. 4. (Color online) Schematic of the experimental
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frequency-domain responses at each frequency with and
without bubbles was scaled by dividing by the average re-
sponse with no bubbles present. If the maximum “scaled”
difference in power was statistically significant, the fre-
quency at which this difference occurred was considered to
be the resonance frequency of the bubble arrangement. A
sample time-domain and corresponding frequency-domain
response are shown in Figs. 5 and 6, respectively, for a 45 Il
bubble. In Fig. 6 the maximum scaled difference occurs at
around 1100 Hz, indicating that that is the resonance fre-
quency of the bubble, when attached to the glass plate.

Although the dominant response detected by the hydro-
phone was believed to be pressure fluctuations caused by the
radial pulsation of the bubble (the breathing mode), there
was the possibility that surface modes28 would interfere with
the response. Surface modes were visually observed, but
only when the system was driven at very high amplitudes. At
the amplitudes used during experimentation, surface modes
were not observed. Given the relatively large size of the
hydrophone head compared to the small scale pressure varia-
tions caused by surface modes, any surface modes that were
present would have had little influence on the hydrophone.
Therefore it is quite reasonable to assume that the above-
determined resonances were indeed associated with the ra-
dial pulsation of the bubble.

It should be emphasized that the purpose of this paper is
to investigate the symmetric mode resonance frequency of
the bubble groups, and not the other possible modes (e.g., the
asymmetric mode). While the experiments were intended to
excite the symmetric mode, small differences in the pressure
amplitude applied to each bubble, as well as slight phase
setup. See Table I for experimental conditions.

Payne et al.: Bubble resonance on a rigid boundary 2845
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differences, tended to excite asymmetric modes as well.
However the symmetric mode appeared to be dominant for
most of the conditions investigated. In the conditions where
this was not the case, only the contribution of the symmetric
mode was identified. Investigation of the asymmetric modes
is beyond the scope of this paper and will be the focus of
future work.

IV. RESULTS AND DISCUSSION

A. Single bubble arrangement with varying bubble
size

Figure 7 shows the symmetric mode resonance fre-
quency versus bubble radius for the case of a single bubble
attached to the glass plate. Superimposed is Minnaert’s rela-
tionship and the analytical expression from Eq. (7) for N

1, as well as the half-bubble approximation. Clearly the
mage theory (the analytical expression) gives a better agree-
ent to the experimental data than Minnaert’s relationship.
he error bars on the experimental results are included, but

are barely visible due to the tight confidence limits on the

FIG. 6. Frequency-domain response of the system with and without bubbles.
The dotted line denotes the response with a 45 Il bubble. The solid line

represents the case when the bubble was removed.
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FIG. 5. Time-domain response of the system with and
without bubbles. The dotted line denotes the response
with a 45 Il bubble. The solid line represents the case
when the bubble was removed. This test used an 80 ms
chirp signal sweeping from 900 to 3500 Hz. A enlarged
region from 0.01 to 0.02 s is highlighted to distinguish
the response with a bubble from the response without a
bubble.

results. The radii given on the horizontal axis represent the
radius of a spherical bubble with a volume (Vinj) equal to the
bubble which was injected (i.e., R0= (3Vinj /47)1/3).

As predicted by the theory, the experimental data show
that smaller bubbles have higher resonance frequencies than
larger ones. This is expected and confirms that the resonance
response of the bubble has been detected by the hydrophone.
Also, both the image theory and the experimental data lie
below Minnaert’s relationship, which is consistent with the
data of previous investigators;18–20 and from the present
work, enough data points are now available for the func-
tional form of the relation to be confirmed. According to the
image theory, this can be reasoned as follows. The effect of
the boundary is equivalent to introducing an image bubble
adjacent to the real bubble. Since the image bubble will ex-
actly “mirror” the real bubble, there is a symmetric coupling
between the real bubble and the image bubble. This increases
the effective mass of the system, resulting in a decrease in

FIG. 7. Comparison of experimental resonance frequencies and theoretical
undamped natural frequencies for a single bubble of varying radius. (---)
Minnaert’s equation and (—) represents the analytical expression for N=1.
(¯) The half-bubble approximation. The points denoted 0 are the experi-

mental results, with error bars shown by vertical lines.

Payne et al.: Bubble resonance on a rigid boundary
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resonance frequency. This is analogous to a mass-spring sys-
tem where an increase in the mass will lower the resonance
frequency.

Although a bubble (especially a large bubble) is flat-
tened when attached to a plate (due to buoyancy and surface
tension) the deviation from spherical shape does not appear
to greatly affect the resonance frequency. Strasberg’s work
on the resonance frequency of oblate spheroids is consistent
with this observation. In his work, he showed that as a
bubble is deformed from sphericity its pulsation frequency
increases, but slightly, increasing by only 2% when the
bubble becomes a spheroid with a ratio of major to minor
axes equal to 2 (see Table I of Strasberg’s work18). Admit-
tedly, his work was for a bubble in free space, but it appears
to be consistent with the trend observed in our experimental
data.

For small bubbles the experimental data show close
agreement with the analytical expression, but on closer
analysis (for radii less than about 3 mm) there is a slight
downwards shift in the experimental data. A possible expla-
nation for this is as follows. Recall that the analytical expres-
ion was based on the assumption that the bubble is spherical
nd is just touching the boundary, meaning that distance be-

tween the real bubble and its image is given by l=2R0. How-
ever, even the smallest bubbles used in the experiments were
slightly flattened, giving l<2R0. This increases the effective
mass and hence decreases the resonance frequency. Conse-
quently the experimental data points are lower than the ana-
lytical expression. There may be other reasons for the slight
downwards shift; such as damping effects. It is known from
elementary mechanics that the damped resonance frequency
of a simple harmonic oscillator (such as a bubble) is lower
than the damped natural frequency. The fact that there is a
downwards shift for smaller bubbles is consistent with
damping having a greater influence on the resonance fre-
quency of smaller bubbles, as proposed by Khismatullin.27

The upwards shift in experimental data points from the
image theory for larger bubble radii (>3 mm) is not as
clearly justified. The measured eccentricity of the spheroidal-
shaped bubbles used in the experiments was approximately
equal to 2, and so the increase in resonance frequency ac-
cording to Strasberg’s18 work is insignificant. Furthermore,
the above-mentioned flattening effect (which has a greater
impact on larger bubbles), would tend to decrease the reso-
nance frequency, making the fit even worse. Even with the
half-bubble approximation, which is a worse fit than the im-
age theory (but a more realistic physical approximation), the
increase in resonance frequency caused by the flattening of
the bubble would be less than 2%, hardly enough to explain
the significant upward shift.

Thus, at this point there seems to be no reasonable ex-
planation for the upwards shift in experimental data points
for larger bubbles. Nonetheless, the limited results of Blue
and Howkins have been found to be consistent with the
present data, in that for small bubbles (which were used by
Blue) the experimental data lie below both Minnaert and the
image (equivalent to Strasberg’s) theory, while for larger
bubbles (which were used by Howkins) the experimental

data lie between Minnaert and Strasberg’s theory. The tran-
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FIG. 8. (Color online) Comparison of experimental resonance frequencies
and theoretical undamped natural frequencies for one, two, and three bubble
arrangements vs bubble radius at a fixed separation, s=3R0. (—) The ana-
lytical expression for one bubble (top curve), two bubbles (middle curve),
and three bubbles (bottom curve). The points denoted 0, D, and ! are the
experimental results for one, two, and three bubbles, respectively, with error
bars shown by vertical lines.

sition from a downwards to upwards shift in the experimen-
tal results as the bubble size increases suggests that for a
bubble attached to a rigid boundary, there is a critical bubble
size greater than which surface tension and buoyancy forces
significantly alter the dynamics and hence resonance fre-
quency of the system.

B. Multiple bubble arrangements with varying bubble
size

Figure 8 shows the experimental data for a three bubble
group arranged in an equilateral triangle, a two bubble group,
and a single bubble. The respective analytical expressions for
N=3, N=2, and N=1 are superimposed. For the arrange-
ments with two and three bubbles, the separation between
bubble centers was kept constant at approximately 3R0, in
which the radius of the bubble was known from the injected
volumetric measurement. Small variations in the volume of
air injected to make the bubbles had negligible impact on the
bubble radius (less than 1.7%).

As with the previous single bubble case, a similar trend
(in terms of variation of resonance frequency with bubble
size) is seen here; where for large bubble radii there is an
upwards divergence from the analytical expression while for
smaller bubble radii there is a downwards shift.

As evident in Fig. 8, the analytical curves are displaced
downwards as N increases. This agrees with the trend in the
experimental data. The downwards shift can be explained by
the increase in effective mass for larger bubble groups, re-
sulting in a lower resonance frequency. There is a clear dis-
tinction between each arrangement which is statistically sig-
nificant since the error bars do not overlap for any given

bubble size.
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FIG. 9. (Color online) Resonance frequency vs ratio of bubble separation to
bubble radius for two 50 Il bubbles (R0=2.29 mm). (---) The undamped
symmetric mode frequency for two spherical bubbles in free space. (—) The
analytical expression (7) for N=2 and l=2R0. (¯) The limit as s approaches
infinity. The points denoted 0 are the experimental results, with error bars
shown by vertical lines.

C. Variation of resonance frequency with bubble
separation

Hsiao et al.8 gave experimental results for the case of
two bubbles interacting in free space at varying separation.
Their results agree with that predicted by their theory, show-
ing that the symmetric mode resonance frequency decreases
as the bubbles are brought closer together. However, there
does not appear in the literature to be results for the case of
two and three bubbles attached to a rigid boundary. Hence
the purpose of the present results, which show that the same
trend as documented for bubbles in free space, also holds for
bubbles attached to a rigid boundary. The results also clearly
show that the image theory is a much better approximation
than the theory for groups of bubbles in an unbounded do-
main.

Figure 9 shows how the symmetric mode resonance fre-
quency decreases as two identical 50 Il bubbles are brought
closer together. The reduction in frequency for smaller sepa-
rations is due to the increased effective mass on each
bubble.12 Conversely, when the bubbles are further apart, the
image loading due to the interaction of the pair is weaker and
the frequency approaches that of a single bubble attached to
a boundary, shown by the dotted horizontal line in Fig. 9 and
subsequent figures.

As mentioned, the radius of a given bubble was known
from the volumetric measurement. Thus for a 50 Il bubble
the nominal spherical radius is 2.29 mm. For a 100 Il
bubble the radius is 2.88 mm. In order to change the ratio of
bubble separation to bubble radius, s /R0, the radii of the
bubbles were kept constant while the bubble separation was
varied (by moving one of the bubbles and keeping the other
fixed). The analytical expression [Eq. (7)] is given by the
solid line in Fig. 9. The expression for two bubbles in an

unbounded domain is equivalent to setting l=� in Eq. (7)
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FIG. 10. (Color online) Resonance frequency vs ratio of bubble separation
to bubble radius for two 100 Il bubbles (R0=2.88 mm). (---) The undamped
symmetric mode frequency for two spherical bubbles in free space. (—) The
analytical expression (7) for N=2 and l=2R0, while (–.–) represents the
analytical expression for l=R0. (¯) shows the limit as s approaches infinity.
The points denoted 0 are the experimental results, with error bars shown by
vertical lines.

with N=2, resulting in the same expression given by Hsiao
et al.8 This is also plotted in Fig. 9 and is given by the
dashed line.

Figure 10 shows the same as Fig. 9 but for two 100 Il
bubbles. The same trend is observed, verifying that the re-
sults are reproducible, but there is a larger discrepancy be-
tween the experiment and theory for large values of s /R0.
Also plotted is the image theory for l=R0, given by the dash-
dot line. This has been plotted because the bubbles are
squashed and the center distance to their image is less than
2R0. On comparison with this line however, there still re-
mains a significant discrepancy, which is possibly due to
surface tension and buoyancy force effects.

The variation in symmetric mode resonance frequency
with bubble separation was also performed on a group of
three equi-spaced bubbles. Figure 11 shows the results for
three 10 Il bubbles (nominal spherical radius of 1.34 mm).
A consistent trend is observed in reasonable agreement with
the theory. The fact that this trend is observed supports the
assumption that the interaction between the pair of bubbles is
caused by the coupled radial pulsations, rather than surface
modes.

V. CONCLUSIONS

The results from this work show that bubbles attached to
a rigid boundary have similar resonance trends to bubbles in
free space, while the actual frequencies are lower. It has been
shown theoretically and experimentally that smaller bubbles
have higher resonance frequencies than larger bubbles, and
that larger groups of bubbles have lower resonance frequen-
cies than smaller groups. The deviation from sphericity was
shown to have a minor effect on the frequencies predicted by
the analytical expression, and is clearly less dominant than
the increase in image loading caused by the decrease in sepa-

ration between a real bubble and its image. Furthermore,
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FIG. 11. (Color online) Resonance frequency vs ratio of bubble separation
to bubble radius for three 10 Il bubbles (R0=1.34 mm). (---) The undamped
symmetric mode frequency for three spherical bubbles in free space. (—)
The analytical expression (7) for N=3 and l=2R0. (¯) The limit as s ap-
proaches infinity. The points denoted 0 are the experimental results, with
error bars shown by vertical lines.

despite the assumptions of spherical bubble shape and the
neglect of surface tension and damping, overall the analytical
expression shows good agreement with the experimental re-
sults. This is a useful outcome, because it means that the
resonance frequency of bubble arrays with greater number of
bubbles can be predicted with a certain degree of accuracy.
However, for very small bubbles, damping would have to be
more rigorously considered. Future experimental work in
this direction would help validate such predictions and pro-
vide guidance for the investigation of acoustic streaming
from bubble arrays as well as sonic cleaning applications.
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